HARD
Median of Two Sorted Arrays
Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n)).
Example
Input:
nums1 = [1,3]
nums2 = [2]
Output:
2.0
Explanation:
Merged array = [1,2,3] and median is 2.0.
Constraints
nums1.length == mnums2.length == n- 0 ≤ m, n ≤ 1000
- 1 ≤ m + n ≤ 2000
- -10⁶ ≤ nums1[i], nums2[i] ≤ 10⁶
Solution: Binary Search
- Time Complexity: O(log(min(m, n))), where m and n are the lengths of the two arrays. Binary search is performed on the smaller array.
- Space Complexity: O(1), as only a constant amount of extra space is used.
C++
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
if (nums1.size() > nums2.size()) return findMedianSortedArrays(nums2, nums1);
int m = nums1.size(), n = nums2.size();
int imin = 0, imax = m, half = (m + n + 1) / 2;
while (imin <= imax) {
int i = (imin + imax) / 2;
int j = half - i;
if (i < m && nums2[j-1] > nums1[i]) {
imin = i + 1;
} else if (i > 0 && nums1[i-1] > nums2[j]) {
imax = i - 1;
} else {
int maxLeft = 0;
if (i == 0) maxLeft = nums2[j-1];
else if (j == 0) maxLeft = nums1[i-1];
else maxLeft = max(nums1[i-1], nums2[j-1]);
if ((m + n) % 2 == 1) return maxLeft;
int minRight = 0;
if (i == m) minRight = nums2[j];
else if (j == n) minRight = nums1[i];
else minRight = min(nums1[i], nums2[j]);
return (maxLeft + minRight) / 2.0;
}
}
return -1;
}
};