HARD
N-Queens
The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle. You may return the answer in any order.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.
Example
Input:
n = 4
Output:
[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
Explanation:
There exist two distinct solutions to the 4-queens puzzle.
Constraints
- 1 ≤ n ≤ 9
Solution: Backtracking
- Time Complexity: O(n!)
- Space Complexity: O(n^2)
C++
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> res;
vector<string> board(n, string(n, '.'));
vector<bool> col(n, false), diag1(2*n-1, false), diag2(2*n-1, false);
function<void(int)> dfs = [&](int row) {
if (row == n) {
res.push_back(board);
return;
}
for (int c = 0; c < n; ++c) {
if (col[c] || diag1[row+c] || diag2[row-c+n-1]) continue;
board[row][c] = 'Q';
col[c] = diag1[row+c] = diag2[row-c+n-1] = true;
dfs(row+1);
board[row][c] = '.';
col[c] = diag1[row+c] = diag2[row-c+n-1] = false;
}
};
dfs(0);
return res;
}
};