MEDIUM
4Sum
Given an array nums of n integers, return all unique quadruplets [nums[a], nums[b], nums[c], nums[d]] such that:
0 <= a, b, c, d < na,b,c, anddare distinct.nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example
Input:
nums = [1,0,-1,0,-2,2], target = 0
Output:
[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Explanation:
There are three unique quadruplets whose sum is 0.
Constraints
- 1 ≤ nums.length ≤ 200
- -10⁹ ≤ nums[i] ≤ 10⁹
- -10⁹ ≤ target ≤ 10⁹
Solution: Two Pointers
- Time Complexity: O(n³)
- Space Complexity: O(1) (excluding the space for the answer)
C++
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
int n = nums.size();
for (int i = 0; i < n - 3; ++i) {
if (i > 0 && nums[i] == nums[i-1]) continue;
for (int j = i + 1; j < n - 2; ++j) {
if (j > i + 1 && nums[j] == nums[j-1]) continue;
int left = j + 1, right = n - 1;
while (left < right) {
long long sum = (long long)nums[i] + nums[j] + nums[left] + nums[right];
if (sum == target) {
res.push_back({nums[i], nums[j], nums[left], nums[right]});
while (left < right && nums[left] == nums[left+1]) ++left;
while (left < right && nums[right] == nums[right-1]) --right;
++left; --right;
} else if (sum < target) {
++left;
} else {
--right;
}
}
}
}
return res;
}
};